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Abstract

In this paper we present an algorithm for multiresolution
integration of 3D data collected from multiple distributed
sensors. The input to the algorithm is a set of 3D surface
samples and associated sensor models. Using a
probabilistic rule, a surface probability function is
generated that represents the probability that a particular
volume of space contains the surface. The surface
probability function is represented using an octree data
structure; regions of space with samples of large
covariance are stored at a coarser level than regions of
space containing samples with smaller covariance. The
algorithm outputs a multiresolution surface generated by
connecting points that lie on the ridge of surface
probability with triangles scaled to match the local
discretization of space given by the octree. To
demonstrate the performance of our algorithm, we
present results from 3D data generated by scanning lidar
and structure from motion.

1 Introduction

To increase coverage and reduce spacecraft complexity,
autonomous exploration by multiple complimentary
sensor platforms will be used for future solar system
exploration missions. Examples are an orbiter, lander and
surface rover used for small body exploration, or a fleet of
aerobots exploring the surface of an outer moon. In these
scenarios, data collected from multiple complimentary
vantage points is integrated into a single map. This map is
shared between platforms and acts as an interface between
platforms to enable formation guidance, navigation and
control.
Using multiple platforms to map a surface has distinct
advantages over single platform mapping. Multiple
platforms allow for wider coverage of the surface being
imaged. For example an orbiter can give a broad view of
the terrain, an aerobot a higher resolution overhead view,
and a rover can map localized high-resolution details of
the surface. Also, different platforms can contain sensors
with different modalities allowing for complimentary
multi-modal mapping of the surface. Finally, if multiple
platforms are used, a broader coverage of the surface can
be obtained in a shorter amount of time.

If it is to be used by all of the platforms, the sensor data
from each platform should be incorporated into a single
3D map. 3D shape can be acquired directly from active
optical sensors or indirectly through the use of passive
sensors and machine vision techniques. Map building
from multiple platforms has several unresolved issues
including: how to combine data from different sensor
modalities and different resolutions, each with different
error characteristics; how to incorporate platform
positional uncertainty into the map being built; and what
map representation facilitates guidance and control.
Map building using a single mobile sensor has been
studied extensively. In general, the techniques integrate
geometric (2D or 3D) sensor data from multiple views
into a single map that describes the shape of the surface
being imaged. Various assumptions are used to make the
problem tractable: 2 ½ D representations, fixed data
resolution, single object, or known sensor positions.
These assumptions do not hold when mapping a surface
using multiple distributed sensor platforms utilizing
sensors of varying modality. The relative uncertainty in
the position of the sensor platforms influences the map
being built, so sensor data uncertainty as well as sensor
platform uncertainty must be handled correctly. Also in
some application scenarios the resolution of data from
different sensors will vary dramatically (e.g., the case of
an orbiter and a lander or rover), so multi-resolution
modeling methods must be employed to seamlessly
integrate data of varying resolution. Finally, the map will
be built in parallel by multiple exploring platforms, so the
map-building algorithm should address the serial/parallel
nature of data acquisition.
Building a seamless surface from multiple overlapping
3D data sets has been studied extensively. Some of the
first work focused on integrating data by creating an
implicit function [1][13] and then polygonizing it using
the marching cubes algorithm [7]. These algorithms were
implemented using a single resolution data structure.
Hilton and Illingworth [6] have developed a
multiresolution surface integration algorithm. This
algorithm combines and compresses data using an octree,
but it does not explicitly model sensor noise. Also, their
algorithm does not generate multiresolution surfaces,
although it is straightforward using their marching
triangles algorithm [5].
Occupancy grids model the probability that a region of
space is occupied by combining noisy sensor data using
Bayesian statistics. Occupancy grids have been shown to
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be a very effective for robot navigation, and 2D [3] and
multiresolution 3D [10] versions of occupancy grids have
been developed. The main drawback of occupancy grids
for our application is that they do not generate a surface
representation; they are inherently a spatial data structure.
However, the concepts employed to generate occupancy
grids did provide us with a conceptual starting point for
our algorithm development.
The input to our multiresolution surface generation
algorithm is a set of 3D surface samples collected using
different sensors of varying location and modality. Each
sample is represented by a measurement model derived
from a sensor model and estimates of registration error.
All 3D sensors, devices that measure 3D shape directly,
and 3D structure recovery algorithms have some form of
measurement model that encodes the uncertainty in the
3D measurement. Using measurement models, data
collected from different sensors at different locations and
resolution can be combined in a formal way.
Using a probabilistic rule, a surface probability function
(SPF) is generated that represents the probability that a
particular volume of space contains the integrated surface.
For efficiency, the SPF is represented using an octree data
structure; regions of space with samples of large
covariance are stored at a coarser scale than regions of
space containing samples with smaller covariance. The
SPF is built up incrementally from the samples; with each
new sample, an increment to the SPF is computed based
on the sample measurement model, and the data stored in
the octree is updated.
The integrated surface lies along the ridge of surface
probability. Finding the ridge requires second order
differential computations. One approach to ridge finding
would be to compute second order derivatives after the
SPF is generated; however, this process is sensitive to
discretization errors and can produce erroneous
derivatives. Instead, the approach we take is to build the
SPF and its derivatives incrementally from the 3D
samples. During SPF generation, we analytically compute
the changes to the SPF and its derivatives produced by
each new sample and store them in the octree. After SPF
generation ridge points are detected based solely on
information stored in individual nodes of the octree.
The multiresolution integrated surface, represented as a
triangle mesh, is generated by applying a variation of the
marching triangles algorithm [5]. In our implementation
of marching triangles, points on the integrated surface are
found by connecting points on the ridge of surface
probability. The size of the triangles generated is matched
to the local discretization of space given by the octree, so
regions of coarse surface sampling will have fewer faces
than regions with fine surface sampling.
The details of the algorithm are explained in the following
sections. To demonstrate the performance of our
algorithm, we also present results that combine data
generated using scanning lidar and structure from motion.

2 Ridge Detection in a Volume

Our algorithm for multiresolution surface generation first
generates a 3D function defining the probability of
surface in a volume and then detects the ridge of surface
probability in this volume. Qualitatively, a point is on a
ridge if the function achieves a maximum at that point
along one or more directions in the space over which the
function is defined. To be more rigorous, we use the
height definition of a ridge stated by Eberly et al. [2] as
follows.

Consider a function ℜ→ℜ3
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and eigenvectors of H− where 321 κκκ ≥≥ . v1 is the
direction in the volume where the gradient is changing the
most. Positive (negative) values ofiκ correspond to

concavities (convexities) off in the direction iv . A point
x is a ridge point of type 3-1 (a surface in a volume) if

0)()(1 =xgxv T and 0)(1 >xκ .

A point x is a strong surface ridge point if

(2) 0)()(1 =⋅ xgxv , 0)(1 >xκ and )()( 31 xx κκ > .

Essentially this definition says that a point is on a surface
ridge when the component of the gradient in the direction
of the greatest rate of change of the gradient is zero and
the function is more concave than it is convex.
To determine if a point is on a ridge, the function, its
gradient and its Hessian need to be defined at the point. In
the next section, we show how we incrementally construct
a surface probability function and its derivatives in order
to facilitate ridge detection in a volume.
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3 Surface Probability Function Derivation

The surface probability function (SPF) is a function that
defines the probability that a region of space contains the
surface. The SPF is generated by accumulating
probabilities using the sensor models associated with
multiple 3D measurements. The ridge in the SPF
corresponds to a 2D boundary representation of the
surface. Generating a SPF from multiple 3D
measurements is straightforward, however, a way to
generate the SPF that enables efficient and robust ridge
detection is not immediately obvious. Below we describe
how a SPF is generated from multiple 3D samples in a
way that facilitates ridge detection.

3.1 Measurement Models

For the following discussion, we will consider 3D
sensors, devices that measure 3D shape directly, and 3D
structure recovery algorithms to be one in the same. Both
generate measurementsµ in the form of 3D pointsp and
both have associated 3D sensor models [1]. Asensor
model is the probability density function used to
determine the probability that the pointx was actually the
point measured by measurementµ.
We define themeasurement modelto be the sensor model
integrated over a small volume of space. The
measurement model )measures()( xx µPM = describes
the probability that the regionV of space around pointx
contains the surface. IfV is small, then the sensor model
will not vary significantly acrossV. In this case the
measurement model is simply the product of the sensor
model andV. Exactly howV is set will be explained in
Section 4.
In 3D structure recovery by stereo matching and
triangulation, it has been shown [8] that the sensor model
can be approximated by a gaussianG with mean centered
on the measurementp and the covariancesÿ dependent
stereo baseline, matched pixel coordinates and the
covariance of the pixel tracking error. In the case of
scanning lidar and radar, the measurement model is a
function of the divergence of the beam, range accuracy of
the sensor and properties of the surface being scanned.
The lidar measurement model can also be approximated
as a gaussian. Using gaussian approximations, both the
stereo and lidar measurement model have the following
functional form
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The difference between the models comes in the
definition of the covariance matricessÿ . Recall that the
measurement model is the product of the sensor model

and a small volumeV, aroundx, over which the sensor
model is relatively constant. Therefore, with a Gaussian
sensor models, the measurement model is

VGM s ⋅= ),()( ÿpx

When the sensor is placed in a general pose described by
a position s and a rotation matrixR, the Gaussian
measurement model is transformed to

VGM s
T ⋅+= ),()( RÿRsRpx

3.2 General Surface Probability Function

The SPF for a single measurementµ, is generated from
the measurement model as follows. The probabilityP that
a point x is on the surfaceS of an object given the
measurementµ is
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If all measurements come from the surface then the
probability thatx is on the surface given that the sensor
actually measuresx is 1. Furthermore, given an arbitrary
point x and no measurements, it reasonable to assign ½ to
the probability thatx is on the surface; we have no idea if
the point is on the surface so give it a surface probability
of 50%. Therefore, the probability that the point is on the
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because in this case the sensor tells us nothing aboutx.
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Substituting in )measures()( xx i
i PM µ= and renaming

the product to )(xnf yields the following definition for

the SPF
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The SPF is generated incrementally by adding
measurements one at a time to a volumetric data structure.

Rather than storing )(xnP , )(xnf is stored, because
this is the only the only part of the SPF that changes. The

incremental update rule for the )(xnf is
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The new product depends only on the old product and the
measurement model for the current sample.
As described in the previous section, the first and second
partial derivatives of the SPF are needed for ridge
detection. The partial derivatives of SPF depend on the

partial derivatives of )(xnf ; these can be represented

with incremental update rules as well.
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These partial derivatives depend only on the previous
partial derivatives, the measurement model and the
measurement model derivatives for the current sample.
Once all of the measurements have been added

)(xnP and its partial derivatives are computed from

)(xnf and its partial derivatives using
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3.3 Gaussian Surface Probability Function

The derivation above holds for sensors with arbitrary
sensor models. All the results shown in this paper are for
sensors with Gaussian sensor models. For this special
case the partial derivatives of the Gaussian are required to
generate the SPF and its derivatives using equations (5),
(6) and (7). Let the Gaussian sensor model for thenth

measurement be ),()( nnn GG ÿpx = . Define
1

2
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let n
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nC . The partial derivatives of the Gaussian measurement
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This completes the theoretical derivation of the surface
probability function. In the next section we will describe
how an SPF is generated using an octree data structure.

4 Octree Representation of the SPF

An octree is a volumetric data structure that partitions
space in an efficient manner [12]. An octree starts with a
root node that bounds the volume to be investigated for
the given application. The root node can be partitioned
into 8 children, each child corresponding to an octant of
the volume spanned by its parent, the root node. The child
nodes can be partitioned in a similar way down to the
level where the leaf nodes are of the desired volume.
Usually an octree is used to store some data at a particular
discretization of space. An octree is more efficient than a
fixed resolution partitioning of space because only the
nodes that contain data need to split down to the level
used to store the data; regions of space that do not contain
data can be represented at a coarser level.

4.1 SPF Storage in an Octree

In our application, we use an octree to store )(xnf and
its derivatives. The node data structure we use contains
the following members: (x,y,z) bounds on the volume
spanned by the node, a pointer to the parent node, a list of
pointers to the children nodes, and floating point data

storage for the )(xnf (1 term), i
nf )(x , (3 terms) and

ij
nf )(x (6 terms since jiij

nn ff )()( xx = ). The (x,y,z)

bounds of the node define a partitioning of space called a
voxel. The center of the voxel is computed as the average
of the bounds.

4.2 SPF Generation from Multiple
Measurements

The SPF is built up incrementally from measurements and
stored in an octree. In brief, the procedure for each
measurement is, determine the octree level for inserting
the measurement, determine the nodes at this level near
the measurement and update the SPF terms for each node.
After all measurements have been added to the octree, the
SPF and its derivatives are computed for each node using
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Equation (7). The details of the algorithm are described
next.
First, the octree is root node is initialized to a cube of side
r that spans all of the data to be inserted into the volume.
Usually all of the data is in available before integration,
so the root is set to the bounding box of the data. If the
data is not available, then the root bounds are set based
the volume for which a surface representation is desired.
Each sample measurementp is inserted into the octree as
follows. First, the desired samplings of the measurement
model is determined. In the case of a Gaussian

measurement model the sampling is set to6
1

Σ which is

equivalent to one standard deviation for a spherical
Gaussian.s determines the levell of the octree at which
the measurement will be inserted byl =log2(r/s).
Next the number of samplesm at sampling s that
adequately spans the volume of the measurement model is
determined. In the Gaussian case,m is set to 7 which
creates a 3 standard deviation sampling of the volume
around the measurement.
An mxmxm volumetric grid of 3D sample positionss is

then generated with spacings centered onp (e.g.,

),,:),,(( mkjimksjsis T ≤≤−+= ps ). Next, for eachs,
the node at levell that containss is found by traversing
the octree.
If the node is a leaf, the centerx and volumeV of the
node are computed.M(x) is then computed (atx usingV)

and the SPF terms )(xnf , i
nf )(x and ij

nf )(x stored in

the node are updated using equations (5) and (6).
If the node does not exist at levell, the smallest node
containings is found (the top node); the top node is then
subdivided down to levell (the children nodes). The
centers for the children nodes are computed. The SPF
terms for children nodes are then determined by
interpolating the SPF terms from the top node evaluated
at the centers of the child nodes using Equation (1). The
child node containings is then updated as described for
the leaf node above.
If the node is not a leaf, the tree is traversed to the leaves
below the node, and the centersx of the leaves are
determined. These leaf nodes are then updated as
described for the leaf node above.
After all measurements have been added to the octree, in

each node )(xnf and its partial derivatives are replaced
with the SPF and its partial derivatives computed using
Equation (7).
Figure 1 shows an example surface integration problem.
Two registered data sets taken of a rock wall with a
scanning lidar are shown. The larger data set has 2x the
spacing and 2x the variance in the measurement model
when compared to the smaller data set. A rendering of the
final octree generated to fuse the measurements is also
shown; the region of the octree containing the smaller

data set has nodes of a smaller size than the regions
containing the larger data set. Also regions that do not
contain data are not partitioned.

Multiresolution Surface

Ridge Points

Octree

Data

Figure 1 Steps in multiresolution surface generation
for an example data set generated from two lidar
scans of a pile of rocks. First the 3D measurements
from the scans are inserted into and octree to generate
the SPF. Next the ridge points are extracted from the
SPF. Finally the ridge points are connected into a
multiresolution surface mesh using marching
triangles.
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Figure 2 shows two slices of the SPF stored in the octree.
One slice shows the SPF values stored in each node; the
variable node size is clearly visible. The other slice shows
the result of using quadratic interpolation of the SPF; in
this case, SPF is much smoother. A smooth SPF is
possible because the first and second order derivatives of
the SPF are stored in each node. Given the smoothness of
the SPF, sub-node ridge detection is possible.
The isoplot of the SPF shows that the surface probability
is higher in the region associated with the smaller data set.
This is to be expected; there are more points in this
region, so the probability that a particular node contains
the surface will be higher. If simple thresholding on
surface probability was employed to detect the surface,
then it is possible that only the surface corresponding to
the small data set would be detected. In contrast, our
approach to surface generation is insensitive to absolute
magnitudes of surface probability because ridge detection
is a second order process.

5 Ridge Extraction from Octree

In this section we describe how the nodes and resulting
3D points on the surface ridge are extracted from the
octree storing the SPF.
Each leaf node in the octree contains the SPF and first and
second order its derivatives which, according to (1),
describe the local quadratic approximation to the SPF
across the node. Using this information alone it is possible
to determine if a ridge passes though the node and the
position of points on the ridge. Consider a node with
center p. First the gradientg and HessianH are

constructed from the partial derivatives )( pnP . Next the

eigenvectors ),,( 321
TTT vvv and eigenvalues[ ]T321 κκκ

for -H are computed where 321 κκκ ≥≥ . According to

(2), the conditions 01 >κ and 31 κκ > are required for

the node to contain a ridge. If these conditions are not met
then the node is not a ridge node.

The next condition for a ridge is that 0)()(1 =⋅ xgxv ; if a
node is to be considered a ridge node thenx must be
within the voxel corresponding to the node. Using (1) to
approximate theg, this condition becomes

(9) 0)))(()(()()()( 11 =−+⋅=⋅ pxpHpgpvxgxv

)(1 pv is an eigenvector of )( pH , so

111 )()()( kT pvpHpv = . This fact and some algebraic

manipulations reduces (9) to

(10) 0))()()(()( 1111 =⋅+⋅−⋅ ppvpgpvxpv k .

This equation defines a plane corresponding to the ridge
in the node. This makes intuitive sense because the plane,

like the ridge, is a 2D surface in a 3D space. Any point on
the plane can be selected as the ridge point as long as it
lies within the voxel. However, for simplicity, we
compute the pointx on the plane closest to the center of
the voxelp using

(11) ))()(()( 111 kpgpvpvpx ⋅+=

If x is within the volume bounds of the node and
01 >κ and 31 κκ > then the node is a ridge node with

ridge pointx defined by (11).
After the SPF is generated, the values stored in each leaf
node are changed to the ones required for surface
generation:P, g, v1 and [ ]321 κκκ .

Almost all of the ridge points lie on a single surface while
a few of the ridge points are outliers. These outliers are
caused by volume discretization and non-uniform spacing
of measurements. Fortunately, most of the outliers can be
eliminated using two simple checks. The first check
removes ridge points with low surface probability while
the second removes ridge points whose surface
probability is less than the surface probability of the either
of two neighboring nodes along the directionv1 (not a
local maximum). Figure 1 shows the ridge points (after
the checks stated above have been applied) detected for
the data sets also shown in Figure 1.

Rid ge with
Interpolation

Ridge without
Interpolation

Figure 2 Two 2D slices through an SPF stored in an
octree shown as grayscale images and isoplots. On the
left is a slice showing the SPF values stored in each
voxel that clearly show the discretization of the octree.
On the right is a slice where the pixel values are
interpolated across each voxel resulting in smooth
transitions between voxels of different resolution and
more accurate ridge detection.
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6 Multiresolution Surface Extraction

Many single resolution volumetric integration algorithms
[1][13] build an implicit function sampled on a regular
grid and then polygonize this function using the marching
cubes algorithm [7]. Applying marching cubes to data
stored at multiple resolutions is not straightforward
because the data are not longer stored in a regular grid
making the table lookup for polygonization difficult or
impossible. Marching cubes can be applied to regions that
have nodes of the same size, but when nodes of different
sizes are adjacent cracks will appear in the surface. This
cracking problem can be solved by triangulation and hole
filling[9][10] but these methods are undesirable because
they generate faces that are perpendicular to the surface.
Marching triangles [5] is an efficient alternative to the
marching cubes algorithm because it typically generates
fewer faces. Marching triangles also applies volumetric
Delaunay constraints to generate triangles that are as
compact (close to equilateral) as possible. Furthermore,
the size of the triangles generated can be controlled to fit
the variable sampling present in octrees. The added
benefits of marching triangles come at the cost of a more
complicated algorithm.
Briefly, marching triangles proceeds as follows. First find
three points that are close to each other and on the
surface. From the points, initialize the surface mesh by
generating three vertices, one triangular face and three
edges. Select an edge from the triangle. Define a point by
projecting out from the edge a fixed distanced
perpendicular to the edge and in the plane of the triangle.
Find the closest point on the surface to this point. If the
surface point passes the Delaunay constraints (no other
points are in the sphere made by the point and the face
edge) then add the point and the resulting triangle to the
face. If the point does not pass the Delaunay constraints
then try and add the triangle made from the edge and one
of the vertices neighboring the edge in the mesh. If these
triangles do not pass the Delaunay constraint, then search
for a point in the mesh that is across from the edge, but
still within the projection distanced, and make a triangle
from the edge and this point. If a point cannot be found or
the generated face does not pass the Delaunay constraint
then move on to the next edge.
We have modified the marching triangles algorithm to
generate multiresolution surfaces by connect ridge points
stored in our octree data structure. The main changes
come in the way that the first triangle is initialized, how
the projection distance is defined and how the closest
point on the surface is determined.
The projection distance is set to the length of the diagonal
of the voxel that contains the vertices of the current edge.
If the vertices lie in voxels of different size, then the
projection distance is set to the average of the diagonals.
By setting projection distance based on voxel size, the
size of the triangles generated will vary linearly with

sampling of the SPF by the octree. In this way the
resolution of the generated surface is varied to match the
resolution of the measurements used to construct the
surface.
Finding the closest point on the surface is straightforward.
Suppose you have query pointq contained in a leaf node
with centerp, gradientg, principal curvature directionv1,
and sizes. If the leaf node is a ridge node then surface has
been found and the ridge point for the node is returned. If
not then the next leaf node, that is closer to the surface
ridge, is found by traversing the octree to find the node
that contains s)( 11 gvgvpq ⋅+=′ . The term

gvg 1⋅ is used to make sure thatv1 points in a direction

that is toward the surface ridge. This process is repeated
until a ridge node is found or a node with no data is
encountered. If no ridge node is found, the search
terminates and failure is reported.
The first triangle is initialized at the maximum of surface
probability. First the octree is traversed to find the ridge
node with the maximum probability. The ridge point for
this node is used as the first vertex of the triangle. The
other vertices of the triangle are generated by finding
ridge points that are in the nodes neighboring the
maximum ridge node.
Figure 1 shows the surface generated for the data also
shown in Figure 1. Note that surface is seamless, and
contains two regions: one high resolution and one low
resolution.

7 Results

Figure 3 shows the multiresolution surface resulting from
the integration of two lidar scans of a target wall. The
scans were generated during a test of hazard detection
algorithms for safe landing on Mars. During this test, a
scanning lidar was placed on a rocket sled along with
other instrumentation and onboard computing. The rocket
sled was propelled down a track toward a 12x65m target
wall composed of conex containers and acrylic
hemispheres of varying diameter. As the target moved
down the track multiple scans of the target were taken
with the lidar. After the test, the motion of the sensor
during scanning was removed from the measurements
using a sensor trajectory (position and attitude) computed
using from onboard sensors.

The lidar has a divergence of 0.1° and a range accuracy of
1% of the range. The fine scan was taken at 100 m which
results in beam width of 17 cm and a range accuracy of 10
cm. The coarse scan was taken at 200 m which results in
beam width of 35 cm and a range accuracy of 20 cm. For
simplicity, the measurement models of the two scans were
approximated by spherical Gaussians with standard
deviations of 15 cm and 30 cm. The measurement models
were large enough to incorporate the sensor measurement
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errors as well as the error in trajectory generation used to
compensate the measurements for the motion of the sled.
Given the extent of the data and the size of the
measurement models the fine scan was inserted at level 7
in the octree while the coarse scan was inserted at level 6.
The resulting multiresolution surface has the expected
characteristics. The surface is more resolved in the
regions that have the fine data and the two regions are
seamless integrated across their border. A comparison of
the reconstructed surface to a CAD model generated for
the target wall shows a good fit; large-scale features with
sufficient measurements are reconstructed correctly while
features with few measurements are smoothed to the
surface supported by the majority of the measurements.
Our lab has a planetary imaging testbed to collect imaging
and lidar measurements in a controlled setting. The
testbed consists of an XY gantry that moves a prismatic
joint in the Z-axis. At the end of the Z-axis is a camera
on a pan/tilt unit and a single axis scanning lidar. The
sensors are placed above a box containing rocks and sand
used to simulate the appearance of planetary terrain.
Figure 4 shows the multiresolution surface generated
from measurements collected using the planetary imaging
testbed. A coarse data sets is generated by taking multiple

single axis scans with the lidar as it is moved along the
horizontal X axis of the gantry. The angular accuracy of
the scanner is 6 mm and the range accuracy is 10 mm. To
account for these errors and discontinuities in the data, the
measurement model is set to a spherical Gaussian with a
standard deviation of 20mm. The coarse measurements
are insert at level 6 in the octree.
The fine data set is generated by moving the camera
across the scene to collect a sequence of images. These
images are processed to estimate the motion of the camera
and then dense structure from motion is use to reconstruct
the imaged scene. The scale of the scene is set based on
the translational motion between images measured by
encoders on the gantry. The measurement model for the
fine data set is set to a spherical gaussian with a 6 mm
standard deviation based on the camera model and the
baseline between the images used for structure recovery.
The fine measurements are inserted into the octree at level
8.
The two data sets are coarsely aligned manually and then
accurately aligned using the iterative closest point
algorithm.

Mesh &
Data

Surface &
Data

Comparison to CAD Model

Figure 3 Multiresolution surface generated from two scans of a target wall used in a test program for safe landing
on Mars. The coarse scan was taken ~200 m from the wall and the fine scan was taken ~100 m from the wall.
Comparison to a CAD model for the target wall clearly shows that large scale features with sufficient measurements
are reconstructed correctly while features with few measurements are smoothed to the surface supported by the
majority of the measurements.
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The resulting multiresolution surface shows the seamless
integration of the data sets that differ in resolution by a
factor of 4 (two levels in the octree). This result also
shows that our algorithm can fuse measurements from
different sensing modalities taken from widely different
positions and resolution.

8 Conclusions

To reduce spacecraft complexity and meet mission goals
with limited resources, future planetary missions will
replace monolithic spacecraft equipped with multiple
sensors by multiple distributed spacecraft each with a
single sensor. To enable concurrent usage by all of the
platforms, the sensor data from each platform will be
incorporated into a single 3D map. To this end, we have
developed an algorithm for multiresolution surface
generation that combines data taken with multiple types
of sensors, at multiple resolutions and from arbitrary
positions. Our surface generation algorithm deals
effectively with noisy data in a simple and formal
probabilistic manner.
This work is the starting point for multiple areas of
future work. Since the SPF is represented in an octree, it
can be compressed using standard octree compression
techniques. For example when the 8 children of a node
all contain similar data, they can be reduced to a single
node. Consequently, during multiresolution surface
generation, larger triangles will be generated in and
around this node. Another area of research will be the
compression and transmission of the integrated surface.
The surface can be represented at many levels: samples
and measurement models, the surface probability
function, or the multiresolution surface. Each
representation has its own form of compression.
Choosing the correct data structure for transmission will
depend on the application, computing resources and
bandwidth available to the multiple distributed assets
employed in mapping.
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Data

Surface

Mesh

Close up of high resolution data

Close up showing resolution interface

Figure 4 Multiresolution surface generated from measurements collected with a planetary imaging testbed using
two different sensing modalities. The coarse data set was generated using overhead single axis scanning lidar (10
mm spacing). The fine data set was collected using a single camera and structure from motion 3D reconstruction (2
mm spacing). A close up of the overlapping regions shows the smooth integration of the data sets with more
detailed features being present in the region containing the fine data. A close up of the mesh border between the
data sets shows the seamless transition between triangles of small size to triangles of a large size.


